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X-ray computed microtomography (microCT) 
scanning can also be used to evaluate changes in 
mammal bone microstructure from burned speci-
mens, which is the focus of this study. Burned bones 
and burned bone fragments can be abundant in 
archaeological sites and their presence can provide 
insight into preservation conditions and processing 
decisions (Riedel and Tecchiati 2005). The analysis of 
burned bones in archaeological samples can shed light 
on hominid evolution, and culinary as well as ritual 
traditions (Berna et al. 2012; Cain 2005; Clark and 
Ligouis 2010; McCutcheon 1992; Steffen and Mackie 
2005; Stiner et al. 1995). The effect of burning on 
bone shrinkage, crystallization, color, and surface 
alterations has been previously observed on modern 
and archaeological samples heated in ovens and 
campfires (Bonucci and Graziani 1975; Nicholson 
1993; Shipman et al. 1984; Stiner et al. 1995). Histo-
logical analyses of burned bones have been carried 
out by Hanson and Cain (2007), but to our 
knowledge, a thorough three-dimensional (3D), 

Introduction 
High resolution X-ray imaging is increasingly used in 
zooarchaeological research to better understand 
taphonomic processes that bones undergo during 
butchery and deposition in the archaeological record 
(Bello et al. 2013; Boschin et al. 2015; Bradfield 2013; 
Shackleford et al. 2013; Tuniz et al. 2012). This 
approach is relatively new in archaeology and offers 
the opportunity to develop and improve analytical 
protocols for zooarchaeological research into bone 
microstructure. Since the physical properties of 
mammal bone are related to age and adaptation to 
mechanical loads, characteristics of bone microstruc-
ture can be indicative of age-at-death and life history 
conditions (Agarwal et al. 2004; Barak et al. 2011; 
Boschin et al. 2015; Brickley et al. 1999; Macho et al. 
2005; Tanck et al. 2001; Shackleford et al. 2013). For 
instance, bone microstructure has the potential to 
yield inferences about domestic stock management or 
to differentiate domestic individuals from their wild 
ancestors (Boschin et al. 2015; Shackleford et al. 
2013).  
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quantitative imaging study on the internal structural 
changes in bone induced by burning has not been 
performed. A preliminary Magnetic Resonance 
Imaging (MRI) analysis was carried out by Thompson 
and Chudek (2007) on a defleshed long bone of 
domestic sheep that had been exposed to different 
heating conditions. As the authors concluded, more in
-depth studies are required to improve the contribu-
tion of this type of research to forensic anthropology 
and archaeology. 

The primary aim of the work presented here is to 
understand if burned bones can be studied by 
microCT analyses to collect reliable data on micro-
structure. In addition, we aim to analyze internal 
features of bone to more reliably identify burned 
specimens. 

Materials and Methods 
We conducted burning experiments using two red fox 
talii (Vulpes vulpes Linnaeus Canidae), one domestic 
pig talus (Sus domesticus Erxleben Suidae) and two first 
phalanges of roe deer (Capreolus capreolus Linnaeus 
Cervidae), at different temperatures in an oven and in 
an open fire (Table 1). All bones were defleshed 
before burning. Talus bones from each species were 
chosen as representative of ‘spongy’ bones, and 

phalanges were selected to understand heat-induced 
bone modifications in the diaphysis (shaft portion) of 
long bones. Roe deer bones were collected in the 
field, and the pig specimen was analyzed a few days 
after butchering. The choice of these specimens was 
influenced by their availability. The fox bones 
(specimens 1 and 2) were analyzed in a previous study 
(Boschin et al. 2015) and are part of the osteological 
reference collection of the University of Siena 
(specimens 160 and 149, respectively). The red fox 
and roe deer specimens came from adult individuals, 
while the domestic pig talus came from a subadult 
(about 1 year old). Fox bones appeared to have 
already lost their fat content, whilst roe deer and 
domestic pig specimens were still greasy before the 
burning experiments.  

The red fox and domestic pig bones were heated 
twice in an oven at the University of Trieste (Italy): 
the first time at 400°C and the second time at 600°C. 
The temperature was maintained for one hour and 
then the specimens were removed. The two roe deer 
phalanges were burned in an open fire over a clay-rich 
sediment. The open fire used about 5 kg of Prunus 
domestica Linnaeus Rosaceae and Vitis vinifera Linnaeus 
Vitaceae wood. Hardwood pieces were of small 
diameter (less than 10 cm). The peak temperature of 

Table 1. Bone measurements (mm) after von den Driesch (1976).  

Specimen ID Taxon Element Combustion GL/GLl/GLpe Bp Bd Measure 2* 

1 Vulpes vulpes Talus 

Not burned 18.7 - - 8.1 

Oven – 400°C 18.5 - - 7.1 

Oven – 600°C 18.5 - - 7.1 

2 Vulpes vulpes Talus 

Not burned 19.5 - - 7.8 

Oven – 400°C 19.5 - - 7.3 

Oven – 600°C 19.5 - - 7.0 

3 Sus domesticus Talus 

Not burned 59.7 - 39.0 - 

Oven – 400°C 59.7 - 37.4 - 

Oven – 600°C 59.0 - 37.1 - 

4 Capreolus capreolus Phalanx 1 
Not burned 35.5 11.8 9.7 - 

Open fire – 900°C 31.6 9.7 7.4 - 

5 Capreolus capreolus Phalanx 1 
Not burned 38.5 12.0 - - 

Open fire – 900°C - 8.8 - - 

*Width of the trochlea at the apex of each condyle. 
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about 900°C, measured with a thermocouple, was 
reached within a few minutes, similar to that as 
observed by other authors (Stiner et al. 1995). This 
open fire was allowed to burn down naturally, and the 
coals were then allowed to smoulder through the 
night. Burned bones were collected the following 
morning. 

Each specimen was measured to the nearest 0.1 
mm prior to and after burning (Table 1), following 
von den Driesch (1976) with the exception of the 
measure of the width of the trochlea at the apex of 
each condyle for the red fox talii. To evaluate internal 
micro-structural modifications, microCT scans were 
carried out at the Abdus Salam International Centre 
for Theoretical Physics of Trieste (ICTP) (Tuniz et al. 
2013) on each bone using the following parameters: 
voltage 110 kV; current 90 μA; 2400 projections. The 
virtual record of the specimens was reconstructed 
with an isometric voxel size ranging from 17.41 to 
30.95 μm. MicroCT imaging analyses were performed 
before and after heating sessions using a semi-
automatic threshold-based image segmentation 
(Coleman and Colbert 2007) to separate bone tissue 
from the interstitial air entrapped between the 
trabeculae. Rectangular cubes (hereafter termed 
‘subvolumes’) of trabecular bone were extracted from 
all specimens to evaluate the structural changes that 
occurred to each bone after burning (Figure 1). 
Subvolume (or Volume of interest, VOI) extraction is 
a virtual biopsy technique currently used in MicroCT 
bone analysis (Lazenby et al. 2011). Characteristics of 
the cancellous bone were analysed using the imaging 
software BoneJ (Doube et al. 2010). The following 
parameters were calculated for each subvolume: the 
connectivity (number of trabeculae); the degree of 

anisotropy (directional stretching); a structural model 
index (Hildebrand and Rüegsegger 1997); the mean 
trabecular thickness in μm; the mean trabecular 
spacing in μm; the bone volume/total volume ratio 
(BV/TV), and the fraction of concave surface. These 
various parameters offer a variety of quantitative 
measures of the degree to which microstructural 
characteristics of bone changed when subjected to 
burning. Since burned specimens were also affected 
by shrinkage, an additional subvolume was extracted 

Figure 1. 3D renderings of bone elements subjected to Micro CT analysis. Hatched rectangles on the bone surfaces indi-
cate the position of the subvolumes sampled and described in the text. Represented bones are: specimen 1 - red fox talus 
(on the left); specimen 3 - pig talus (in the middle); specimen 4 – roe deer first phalanx (on the right). 

 

Figure 2. Subvolume extracted from the domestic pig 
talus showing the trabecular network. The large void in 
upper right of this image does not allow for a conven-
tional measurement of mean trabecular spacing. Never-
theless, this part of bone was chosen for the high repro-
ducibility across measurement angles. 
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from every bone prior to burning in order to provide 
a reference scale for comparison after burning 
(Lazenby et al. 2011). Mean trabecular spacing could 
not be quantified from the domestic pig talus, due to 
the peculiar shape of that portion of trabecular 
network (Figure 2).  

Micro CT analysis of the diaphyses of the roe 
deer phalanges were distinguished from the proximal 
and distal epiphyses, and the following parameters 
were measured: bone volume; volume of the voids 
within the diaphysis; and volume of the marrow 
cavity. MicroCT scans were carried out the day after 
burning. In the case of the pig and the red fox talii, a 
few days passed between heating sessions. Specimens 
are numbered from 1 to 5 in Table 1. 

Results  
All burned bones exhibited shrinkage in their absolute 
volume, though this was variable between species and 
with temperature (Table 1). These results are con-
sistent with previous observations (e.g., Shipman et al. 
1984) in which the degree of bone shrinkage was 
positively related to higher temperatures. The greatest 
shrinkage was observed for the roe deer phalanges 
(Greatest Length of the peripheral half - GLpe - from 
35.5 to 31.6 in Specimen 4; Greatest Breadth of the 
proximal end - Bp - from 11.8 to 9.7 and from 12.0 to 
8.8). In addition, heat-induced shrinkage caused 
Specimen 5 to fracture along the shaft, making it 
impossible to measure the bone’s length (GLpe). 
Specimen 4 does not show any macroscopic charac-
teristics indicating marked shrinkage. 

The ratio of bone volume to total volume (BV/
TV) increases after burning in Specimen 1 but 

decreases in Specimen 4 and follows an ambiguous 
pattern in Specimen 2. The BV/TV ratio was not 
recorded for Specimens 3 and 5 due to the presence 
of visible cracks that compromised the analysis. (Table 
2). 

Characteristics of bone microstructure show 
drastic changes after burning (Tables 3 and 4). Most 
of the measurable changes were in trabecular shape 
(from plate-like trabeculae to rod-like trabeculae or vice 
versa as indicated by the Structure Model index), 
thickness, and spacing. Changes in the BV/TV ratio 
and anisotropy do not appear to be significant in 
some of extracted subvolumes (Tables 3 and 4). The 
decrease of bone volume of the diaphysis of Specimen 
4 from 53.64 to 43.69% of the total volume is 
mirrored by an increase in the marrow cavity volume 
from 46.14 to 56.23%. Likewise, the volume of voids 
within the compact bone of the diaphysis also 
decreases from 0.23 to 0.08% (numbers not in 
Tables).  

At 600°C the cortical bone of all epiphyses in the 
study exhibits small, thin cracks that are sometimes 
criss-crossed (Figure 3). A polyhedral patterning 
(pentagonal or hexagonal) is sometimes visible. Virtual 
transversal cross-sections of Specimen 4 show that 
greyscale values of the external part of compact bone 
of the diaphyseal shaft are higher than those of the 
internal part (220 vs. 137), thus indicating a higher 
density (Figure 3B). This feature was not observed in 
Specimen 5, which fractured after heating-induced 
deformation whereby both inner and outer shaft 
surfaces then burned with the same intensity. Most of 
cracks of the diaphysis of Specimen 4 appear to be 
perpendicular to the outer surface and do not reach 

Table 2. Bone Volume/Total Volume (BV/TV) counted for the whole bones before and after the heating sessions. % of 
change of the parameter was calculated following the formula = (initial value/final value*100)-100. 

Specimen ID Taxon Element Combustion BV/TV % of change 

1 Vulpes vulpes Talus 

Not burned 0.66 - 

Oven – 400°C 0.69 4.54 

Oven – 600°C 0.74 12.00 

2 Vulpes vulpes Talus 

Not burned 0.71 - 

Oven – 400°C 0.65 -8.45 

Oven – 600°C 0.71 0 

4 
Capreolus  
capreolus 

Phalanx 1 
Not burned 53.23 - 

Open fire – 900°C 48.28 -7.50 
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the less dense inner layer of bone. Exfoliation is not 
observed in Specimens 1, 2, 3 and 4. Clear cracks 
parallel to the outer bone surface are visible only in 
Specimen 5 and are related to diaphysis breakage and 
deformation. 

Discussion 
This analysis indicates that bone microstructure starts 
to change significantly at about 400°C. These results 
are consistent with other studies reporting burning-
induced bone shrinkage at lower temperatures, 
between 150 and 300°C (Shipman et al. 1984). The 
improvements of this 3D imaging method indicate 
that the intensity of shrinkage does not occur 
consistently, but likely varies with shape, bone 
thickness, and degree of dehydration or other factors. 

For instance, Specimen 4 underwent an overall 
reduction in length by 10.90%, but a reduction in 
proximal breadth of 17.80%. This anisotropic change 
affects bone internal structure by deforming the 
trabecular network and the cortical structure of the 
bone shaft (diaphysis). Other alterations occurred in 
the cancellous bone of tarsal elements as well as 
epiphyses and diaphyseal portions of phalanges. In the 
cortical portion of tarsal bones the BV/TV ratio 
appears to change as a result of collapsing (and 
obstruction) of small porosities observed by an 
increase in the index value or because of the presence 
of micro cracks reflected in the diminution of the 
index value. The degree of dehydration induced by the 
heating processes appears to be followed by the loss 

Table 3. Parameters measured on the subvolumes of trabecular tissue. Abbreviations: DA: degree of anisotropy; C: con-
nectivity; SMI: Skeletal Model Index; Tb.Th: mean of Trabecular Thickness; Tb.Sp.: mean of trabecular spacing; BV/TV: Bone 
Volume/Total Volume; FCS: Fraction of Concave Surface.  

Specimen 
ID Taxon Element Combustion DA C SMI 

Tb. Th. 

(µm) 

Tb. Sp. 

(µm) BV/TV FCS (%) 

1 Vulpes vulpes 

Talus – vol 1 

Not burned 0.58 137.75 -0.04 233.95 380.10 0.52 0.53 

Oven – 400°C 0.62 402.88 1.29 201.78 272.99 0.50 0.37 

Oven – 600°C 0.53 286.80 0.76 198.13 289.35 0.51 0.42 

Talus – vol 2 

Not burned 0.78 449.00 0.57 229.42 340.91 0.48 0.48 

Oven – 400°C 0.79 173.00 0.85 215.54 324.87 0.48 0.45 

Oven – 600°C 0.80 149.10 0.42 231.38 311.29 0.51 0.48 

2 Vulpes vulpes 

Talus – vol 1 

Not burned 0.33 736.80 1.85 193.71 420.34 0.36 0.31 

Oven – 400°C 0.59 289.00 1.45 173.93 367.35 0.40 0.34 

Oven – 600°C 0.59 182.00 0.44 214.84 355.86 0.48 0.47 

Talus – vol 2 

Not burned 0.70 226.50 0.61 226.11 300.15 0.50 0.48 

Oven – 400°C 0.80 184.20 1.01 205.44 354.64 0.44 0.43 

Oven – 600°C 0.80 165.30 0.30 231.20 334.97 0.50 0.50 

3 Sus domesticus Talus 

Not burned 0.89 748.62 0.66 330.42 - 0.15 0.43 

Oven – 400°C 0.87 989.00 2.27 257.50 - 0.11 0.22 

Oven – 600°C 0.87 830.00 1.78 277.62 - 0.13 0.28 

4 
Capreolus  
capreolus 

Phalanx 1 
Not burned 0.67 135.50 3.34 181.72 463.05 0.27 0.15 

Open fire – 900°C 0.68 98.10 3.20 131.30 384.43 0.27 0.10 

5 
Capreolus  
capreolus 

Phalanx 1 
Not burned 0.67 184.60 1.91 168.75 306.23 0.44 0.29 

Open fire – 900°C 0.62 169.00 1.91 154.55 208.06 0.57 0.29 
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of pore space in the compact bone of diaphyseal 
shafts. Changes in BV/TV ratio of cancellous bone 
can be due to destruction and deformation of 
trabeculae similarly associated with bone shrinkage. 
The measure of connectivity may change due to 
trabecular destruction (corresponding to a diminution 
of the index), or it may be due to splitting or cracking 
(corresponding to a possible increase in index values). 
Diminution in trabecular thickness could also be due 
to rapid bone dehydration, while diminution in 
trabecular spacing could be related to shrinkage. An 
increase in trabecular thickness in three of the red fox 
specimens examined after the second heating session 
is difficult to explain with these data. 

Criss-crossed cracks of the cortical bone ob-
served in this study (Figure 3) confirm observations 
made by Hanson and Chain (2007) on burned bone 
thin sections. They indicate this feature as helpful in 
identifying high intensity burning, which is associated 

with white colour matrix (sometimes referred to as 
calcined bone) and structural disintegration. The 
higher density of such cracking observed in the outer 
part of the diaphysis of Specimen 4 (Figure 3B) could 
be related to the heat-induced recrystallisation of 
bone. 

Conclusions 
In-depth studies of heat-induced changes to bone 
structure bear significant importance for archaeologi-
cal and forensic research (Bonucci and Graziani 1975; 
Cain 2005; Clark and Liguois 2010; Hanson and Cain 
2007; Steffen and Mackie 2005; Stiner et al. 1995; 
Thompson 2004; Thompson and Chudek 2007). Our 
preliminary data, though based on a small sample, 
demonstrate that burning affects bone microstructure, 
and this analysis provides a range of parameters, 
surpassing the analytical resolution of previous 
studies. Since some authors have reported differences 

Table 4. Percentage change for parameters measured on the subvolumes of trabecular tissue. Formula = (initial value/
final value*100)-100.2 

Specimen ID Taxon Element Combustion DA C SMI 
Tb. 
Th. 

Tb. 
Sp. BV/TV FCS 

1 Vulpes vulpes 

Talus – vol 1 

Oven – 400°C 6.90 192.47 
-

3683.33 
-

13.75 
-

28.18 
-3.85 -29.79 

Oven – 600°C -8.62 108.20 
-

2211.11 
-

15.31 
-

23.88 
-1.54 -20.30 

Talus – vol 2 
Oven – 400°C 1.28 -61.47 49.12 -6.05 -4.70 -1.04 -6.25 

Oven – 600°C 2.56 -66.79 -26.49 0.85 -8.69 6.25 0 

2 Vulpes vulpes 

Talus – vol 1 

Oven – 400°C 78.79 -60.78 -21.41 
-

10.21 
-

12.61 
11.11 9.68 

Oven – 600°C 78.79 -75.3 -76.15 10.91 - 33.33 51.61 

Talus – vol 2 
Oven – 400°C 14.29 -18.68 65.57 -9.14 18.16 -12.00 -10.04 

Oven – 600°C 14.29 -27.02 -50.82 2.25 11.60 0 4.60 

3 Sus domesticus Talus 

Oven – 400°C -2.25 32.11 244.98 - - -26.67 -48.8 

Oven – 600°C -2.25 10.87 170.52 - - -13.33 -34.88 

4 Capreolus capreolus Phalanx 1 Open fire – 1.49 -27.6 -4.19 - - 0 -33.33 

5 Capreolus capreolus Phalanx 1 
Open fire – 
900°C 

-7.46 -8.45 0 -8.41 
-

32.06 
29.55 0 
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between bones burned with the flesh still on and 
defleshed bones (Binford 1963; Whyte 2001), it has to 
be pointed out that our study involved only defleshed 
bones and our observations reflect this condition. We 
show that bone heating induces a deformation of 
trabecular shape and strong changes in the trabecular 
network. We also observe a decrease in trabecular 
thickness and spacing as well as a change in the 
number of trabeculae, although these trends are not 
clear and exceptions have been observed.  

This work highlights some important caveats for 
researchers to consider when working with burned 
bones. First, since trabecular structure is related to an 
animal's form of locomotion (Barak et al. 2001), 
biomechanical studies involving burned bones need 
to consider how burning may contribute to the 
observed trabecular structure. Trabecular parameters 
are also related to age-at-death (Boschin et al. 2015) 
and heat-induced changes could lead to misinterpreta-
tions if the age-at-death is inferred from microscopic 
observations. The analysis of burned specimens 
belonging to different age classes would help to clarify 
if burned specimens can be analysed to obtain at least 
an approximate age-at-death. In addition, at higher 
temperatures (600°C or more) bone cracks can 
represent another problem for quantifying character-
istics of bone microstructure. Since patterns of 
cracking can be observed in the whole bone and 
characterised in three dimensions using micro-CT, 

further studies are needed to compare heat-induced 
cracks with those related to diagenesis and weathering. 
These non-destructive methods can lead to the 
identification of burned bones whose color and 
surface preservation were altered by other factors 
(Hanson and Cain 2007; Nicholson 1993). Finally, to 
better clarify how heat influences bone microstruc-
ture, a next step in our research will be to reproduce 
these results analysing a larger sample and controlling 
some parameters (anatomical element and bone 
conditions before burning) and to examine burned 
bones that still retain flesh as well as boiled bone, 
since the influence on 3D bone microstructural 
organization of  such cooking methods that are often 
identified in archaeological contexts remains un-
known. 
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Figure 3. Cross-sections of burned specimens 1 (A), burned at 600°C, 4 (B), burned at 900°C, and 5 (C), burned at 900°C. Thin 
cracks perpendicular to the outer surface are visible in the cortical region of specimens A and B (white arrows). Cracks paral-
lel to the outer surface, related to bone deformation, are visible in C. A change in greyscale values from the marrow cavity 
to the outer surface (indicating an increase in bone density) is visible in B. 
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