A Look from the Inside: MicroCT Analysis of Burned Bones

  • Francesco Boschin Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, UR Preistoria e Antropologia, Università degli Studi di Siena, Via Laterina 8, 53100 Siena. CeSQ, Centro Studi sul Quaternario ONLUS. Via Nuova dell'Ammazzatoio 7, I - 52037 Sansepolcro (Arezzo), Italy.
  • Clément Zanolli Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste.
  • Federico bernardini Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste. Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Piazza del Viminale 1, 00184 Roma.
  • Francesco Princivalle Università degli Studi di Trieste, Dipartimento di Matematica e Geoscienze. Via Weiss 8, 34127 Trieste.
  • Claudio Tuniz Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste. Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Piazza del Viminale 1, 00184 Roma.
Keywords: MicroCT imaging, Burned bones, Taphonomy, Zooarchaeology

Abstract

MicroCT imaging is increasingly used in paleoanthropological and zooarchaeological research to analyse the internal microstructure of bone, replacing comparatively invasive and destructive methods. Consequently the analytical potential of this relatively new 3D imaging technology can be enhanced by developing discipline specific protocols for archaeological analysis. Here we examine how the microstructure of mammal bone changes after burning and explore if X-ray computed microtomography (microCT) can be used to obtain reliable information from burned specimens. We subjected domestic pig, roe deer, and red fox bones to burning at different temperatures and for different periods using an oven and an open fire. We observed significant changes in the three-dimensional microstructure of trabecular bone, suggesting that biomechanical studies or other analyses (for instance, determination of age-at-death) can be compromised by burning. In addition, bone subjected to very high temperatures (600°C or more) became cracked, posing challenges for quantifying characteristics of bone microstructure. Specimens burned at 600°C or greater temperatures, exhibit a characteristic criss-cross cracking pattern concentrated in the cortical region of the epiphyses. This feature, which can be readily observed on the surface of whole bone, could help the identification of heavily burned specimens that are small fragments, where color and surface texture are altered by diagenesis or weathering.

Author Biographies

Francesco Boschin, Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, UR Preistoria e Antropologia, Università degli Studi di Siena, Via Laterina 8, 53100 Siena. CeSQ, Centro Studi sul Quaternario ONLUS. Via Nuova dell'Ammazzatoio 7, I - 52037 Sansepolcro (Arezzo), Italy.

Francesco Boschin is collaborating with the University of Siena (Italy) carrying out zooarchaeological research and taphonomic studies on Pleistocene and Holocene faunal assemblages in Italy. In the last years he developed new applications of 3D microscopy and MicroCT imaging on faunal remains.

Clément Zanolli, Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste.

Clément Zanolli is carrying out several palaeoanthropological studies focusing his interest in the application of MicroCT imaging in the analysis of primates skeletal remains.

Federico bernardini, Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste. Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Piazza del Viminale 1, 00184 Roma.
Federico Bernardini is an archaeologist that focused his research in archaeometry. He is working at the Abdus Salam International Centre for Teorethical Phisics of Trieste (Italy) and is developing new protocols for the application of Microtomography in the study of cultural heritage.
Francesco Princivalle, Università degli Studi di Trieste, Dipartimento di Matematica e Geoscienze. Via Weiss 8, 34127 Trieste.
Francesco Princivalle is full Professor at the University of Trieste. He focused most of his research in mineralogy but he also collaborates with archaeologists in archaeometric studies. 
Claudio Tuniz, Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics, Italy. Strada Costiera 11, 34014 Trieste. Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Piazza del Viminale 1, 00184 Roma.
Claudio Tuniz is Scientific consultant of the ICTP (the “Abdus Salam” International Centre for Theoretical Physics of Trieste, Italy) and the coordinator of the X-ray Microanalysis for Archaeology and Palaeoanthropology Project, at the ICTP Multidisciplinary Laboratory.

References

Agarwal, S. C., M. Dimitriu, G. A. Tomlinson, and M. D. Grynpas. 2004. Medieval Trabecular Bone Architecture: The Influence of Age, Sex, and Lifestyle. American Journal of Physical Anthropology 124:33-44. Doi:10.1002/ajpa.10335.

Barak, M. M., D. E. Lieberman and J.-J. Hublin. 2011. A Wolff in Sheep’s Clothing: Trabecular Bone Adaptation in Response to Changes in Joint Loading Orientation. Bone 49:1141-1151. Doi:10.1016/j.bone.2011.08.020.

Bello, S. M., I. De Groote, and G. Delbarre. 2013. Application of 3-Dimensional Microscopy and Micro-CT Scanning to the Analysis of Magdalenian Portable Art on Bone and Antler. Journal of Archaeological Science 40:2464-2476. Doi:10.1016/j.jas.2012.12.016.

Berna, F., P. Goldberg,L. Kolska Horwitz, J. Brink, S. Holt, M. Bamford and M. Chazan. 2012. Microstratigraphic Evidence of In Situ Fire in the Acheulean Strata of Wonderwerk Cave, Northern Cape Province, South Africa. Proceedings of the National Academy of Sciences 109:1215-1220.

Binford, L. R. 1963. An Analysis of Cremations from Three Michigan sites. Wisconsin Archaeologist 44: 98-110.

Bonucci, E. and G. Graziani. 1975. Comparative Thermogravimetric, X-ray Diffraction and Electron Microscope Investigations of Burnt Bone from Recent, Ancient and Prehistoric Age. Atti Accademia Nazionale dei Lincei. Classe di Scienze, Fisiche, Matematiche e Naturali Rendiconti LIX:517-532.

Boschin F., F. Bernardini, C. Zanolli, and C. Tuniz. 2015. MicroCT Imaging of Red fox Talus: A Non-Invasive Approach to Evaluate Age at dDeath. Archaeometry 57(Suppl. 1):194-211. Doi: 10.1111/arcm.12122.

Bradfield, J. 2013. Investigating the Potential of Micro-Focus Computed Tomography in the Study of Ancient Bone Tool Function: Results from aActualistic Experiments. Journal of Archaeological Science 40:2606-2613. Doi:10.1016/ j.jas.2013.02.007.

Brickley, M. and P. G. T. Howell. 1999. Measurement of Changes in Trabecular Bone Structure with Age in an Archaeological Population. Journal of Archaeological Science 26: 151-157. Doi:10.1006/jasc.1998.0313.

Cain, C. R. 2005. Using Burned Animal Bone to Look at Middle Stone Age Occupation and Behavior. Journal of Archaeological Science 32:873-884. Doi: 10.1016/j.jas.2005.01.005.

Clark J., L. and B., Liguois. 2010. Burned Bone in the Howieson’s Poort and Post-Howieson’s Poort Middle Stone Age Deposits at Sibudu (South Africa): Behavioral and Taphonomic Implications. Journal of Archaeological Science 37:2650-2661. Doi: 10.1016/j.jas.2010.06.001.

Coleman, M. N. and M. W. Colbert. 2007. Technical Note: CT Thresholding Protocols for Taking Measurements on Three-Dimensional Models. American Journal of Physical Anthropology 133:723-725. Doi:10.1002/ajpa.20583.

Doube, M., M. M. Kłosowski, I. Arganda-Carreras, F. Cordelières, R. P. Dougherty, J. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine. 2010. BoneJ: Free and Extensible Bone Image Analysis in ImageJ. Bone. 47:1076-1079. Doi:10.1016/j.bone.2010.08.023.

Hanson, M. and C. R., Cain. 2007. Examining Histology to Identify Burned Bone. Journal of Archaeological Science 34:1902-1913. Doi: 10.1016/j.jas.2007.01.009.

Hildebrand, T. and P. Rüegsegger. 1997. Quantification of Bone Microarchitecture with the Structure Model Index. Computer Methods in Biomechanics and Biomedical Engineering 1:15-23. Doi:10.1080/01495739708936692.

Lazenby, R. A., M. M. Skinner, T. L. Kivell, and J.-J. Hublin. 2011. Scaling VOI Size in 3D μCT Studies of Trabecular Bone: A Test of the Over-Sampling Hypothesis. American Journal of Physical Anthropology 144:196-203. Doi:10.1002/ajpa.21385.

Macho, G. A., R. L. Abel, and H. Schutkowski. 2005. Age Changes in Bone Microstructure: Do they Occur Uniformly? International Journal of Osteoarchaeology 15:421-430. Doi:10.1002/oa.797.

McCutcheon, P. T. 1992. Burned Archaeological Bone. In Deciphering a Shell Midden, edited by J. K. Stein, pp. 347-370. Academic Press, San Diego.

Nicholson, R. A. 1993. A Morphological Investigation of Burnt Animal Bone and an Evaluation of its Utility in Archaeology. Journal of Archaeological Science 20:411-428.

Riedel A. and U. Tecchiati. 2005. La Fauna del Luogo di Culto dell’Età del Rame di Vadena-Pfatten, Località Pigloner Kopf (Bolzano). Risultati Degli Scavi del 1998. In Atti 3° Convegno Nazionale di Archeozoologia (Siracusa, 2000), edited by I. Fiore, G. Malerba, and S. Chilardi, pp. 223-239. Istituto Poligrafico e Zecca dello Stato, Roma.

Shackelford, L., F. Marshall, and J. Peters. 2013. Identifying Donkey Domestication through Changes in Cross-Sectional Geometry of Long Bones. Journal of Archaeological Science 40:4170-4179. Doi:10.1016/j.jas.2013.06.006.

Shipman P., G. Foster, and M. Shoeninger. 1984. Burnt Bones and Teeth: an Experimental Study of Color, Morphology, Crystal Structure and Shrinkage. Journal of Archaeological Science 11:307-325.

Stiner M. C., S. L. Kuhn, S. Weiner, and O. Bar-Yosef. 1995. Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone. Journal of Archaeological Science 22: 223-237.

Steffen M., and Q., Mackie. 2005. An Experimental Approach to Understanding Burnt Fish Bone Assemblages within Archaeological Hearth Contexts. Canadian Zooarchaeology 23:11-38.

Tanck, E., J. Homminga, G. H. van Lenthe, and R. Huiskes. 2001. Increase in Bone Volume Fraction Precedes Architectural Adaptation in Growing Bone. Bone 28:650-654. Doi:10.1016/S8756-3282(01)00464-1.

Thompson, T. J. U. 2004. Recent Advances in the Study of Burned Bone and their Implications for Forensic Anthropology. Forensic Science International 146:203-205. Doi:10.1016/j.forsciint.2004.09.063.

Thompson, T. J. U. and Chudek J. A. 2007. A Novel Approach to the Visualisation of Heat-Induced Structural Change in Bone. Science and Justice 47:99-104. Doi:10.1016/j.scijus.2006.05.002.

Tuniz, C., F. Bernardini, A. Cicuttin, M. L. Crespo, D. Dreossi, A. Gianoncelli, L. Mancini, A. Mendoza Cuevas, N. Sodini, G. Tromba, F. Zanini, and C. Zanolli. 2013. The ICTP-Elettra X-ray Laboratory for Cultural Heritage and Archaeology. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 711:106-110. Doi:10.1016/j.nima.2013.01.046.

Tuniz, C., F. Bernardini, I. Turk, L. Dimkaroski, L. Mancini, and D. Dreossi. 2012. Did Neanderthals Play Music? X-Ray Computed Micro-Tomography of the Divje Babe ‘Flute’. Archaeometry 54:581-590. Doi: 10.1111/j.1475-4754.2011.00630.x.

von den Driesch, A. 1976. A Guide to the Measurements of Animal Bones from Archaeological Sites. Peabody Museum Bulletins 1, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA.

Whyte, T. R. 2001. Distinguishing Remains of Human Cremations from Burned Animal Bones. Journal of Field Archaeology 28:437-448.

Published
2015-12-18
How to Cite
Boschin, F., Zanolli, C., bernardini, F., Princivalle, F., & Tuniz, C. (2015). A Look from the Inside: MicroCT Analysis of Burned Bones. Ethnobiology Letters, 6(2), 258-266. https://doi.org/10.14237/ebl.6.2.2015.365
Section
Research Communications