What is Your “Phytolith Load”? An Examination of the Potential for Cross-Contamination During Phytolith Extraction

  • Abigail Francesca Buffington Department of Anthropology,The Ohio State University
  • Andrew Weiland Department of Anthropology, The Ohio State University
  • Julia Arnold Department of Microbiology & Department of Molecular Genetics, The Ohio State University
  • Drew Arbogast Department of Ecology, Evolution and Organismal Biology, The Ohio State University
Keywords: Phytoliths, Contamination, Paleoethnobotany, Sediment analysis

Abstract

Phytoliths—amorphous opal silica bodies that form in living plant tissues—are assumed to be stable components of a soil matrix, minimally impacted by normal physical forces. This stability enables archaeologists to access an archive of prior vegetative landscapes when discrete horizons are recovered. However, there is a small chance of phytoliths moving in a laboratory setting via aeolian forces, especially after they have been isolated from other materials such as clay, organics, and carbonates, and when multiple samples are being processed simultaneously. As a result, an assessment of contamination risk on sample extraction is necessary for interpreting the results of phytolith analyses. We designed a study to test the potential for contamination on slides in two different locations of the phytolith laboratory. The results of our study inform how we can improve on phytolith processing protocols and analyses to reduce the potential effect of cross-contamination between samples.

Author Biographies

Abigail Francesca Buffington, Department of Anthropology,The Ohio State University
Abigail Buffington is an environmental anthropologist interested in paleoethnobotany, ancient landscapes, and pastoralism in the Near East
Andrew Weiland, Department of Anthropology, The Ohio State University
Andrew Weiland is a PhD Candidate at The Ohio State University. He specializes in North American paleoethnobotany. 
Julia Arnold, Department of Microbiology & Department of Molecular Genetics, The Ohio State University
Julia Arnold is a student at The Ohio State University with interests in cultural anthropology, German language, genetics, and microbiology.
Drew Arbogast, Department of Ecology, Evolution and Organismal Biology, The Ohio State University
Drew Arbogast is a student at The Ohio State University with interests in conservation and restoration ecology, paleoecology, and cultural anthropology.

References

Albert, R.M. and S. Weiner. 2001. Study of Phytoliths in Prehistoric Ash Layers from Kebara and Tabun Caves. In Phytoliths: Applications in Earth Science and Human History, edited by J. D. Meunier and F. Colin, pp. 251–266. A.A. Balkema Publishers, Lisse, Netherlands.

Alexandre, A., J.D. Meunier, A.M. Lézine, A. Vincens, and D. Schwartz. 1997. Phytoliths: Indicators of Grassland Dynamics during the Late Holocene in Intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136:213–229. DOI:10.1016/S0031-0182(97)00089-8.

Buffington, A., M.J. Harrower, J. McCorriston, E.A. Oches. 2017. A Niche Construction Approach to Vegetation Community Development in the Southwest Arabian Neolithic: Preliminary Results. Proceedings of the Seminar for Arabian Studies. 47:31-42.

Cabanes, D., S. Weiner, and R. Shahack-Gross. 2011. Stability of Phytoliths in the Archaeological Record: A Dissolution Study of Modern and Fossil Phytoliths. Journal of Archaeological Science 38:2480–2490. DOI:10.1016/j.jas.2011.05.020.

Crassard, R., J. McCorriston, E. Oches, A. Bin ‘Aqil, J. Espange, and M. Sinnah. 2006. Manayzah, Early to Mid-Holocene Occupations in Wadi Sana (Hadramawt, Yemen). Proceedings of the Seminar for Arabian Studies 36:151–173.

Crowther, A., M. Halsam, N. Oakden, D. Walde, and J. Mercader. 2014. Documenting Contamination in Ancient Starch Laboratories. Journal of Archaeological Science 49:90–104. DOI:10.1016/j.jas.2014.04.023.

Diester-Haas, L., H.J. Schrader, and J. Thiede. 1973. Sedimentological and Paleoclimatological Investigations of Two Pelagic Ooze Cores Off Cape Barbas, Northwest Africa: “Meteor” Forsch–Ergebnisse. Reihe C. 16:19–66.

Ehrenberg, C.G. 1847. Passatstaub und Blutregen: Ein Großes Organisches Unsichtbares Wirken und Leben in der Atmosphäre. In Abhandlung der Königlichen, edited by Deutsche Akademie der Wissenschaften zu Berlin, pp. 269–460. Verlag der Königlichen Akademie der Wissenschaften, Berlin.

Folger, D.W., L.H. Burkle, and B.C. Heezen. 1967. Opal Phytoliths in a North Atlantic Dust Fall. Science 155:1243–1244. DOI:10.1126/science.155.3767.1243.

Fishkis, O., J. Ingwersen, M. Lamers, D. Denysenko, and T. Streck. 2010a. Phytolith Transport in Soil: A Laboratory Study on Intact Soil Cores. European Journal of Soil Science 61:445–455. DOI:10.1111/j.1365-2389.2010.01257.x.

Fishkis, O., J. Ingwersen, M. Lamers, D. Denysenko, and T. Streck. 2010b. Phytolith Transport in Soil: A Field Study Using Fluorescent Labelling. Geoderma 157:27–36. DOI:10.1016/j.geoderma.2010.03.012.

Gobetz, K.E. and S.R. Bozarth. 2001. Implications for Late Pleistocene Mastodon Diet from Opal Phytoliths in Tooth Calculus. Quaternary Research 55:115–122. DOI:10.1006/qres.2000.2207.

Gol’yeva, A.A., A.L. Aleksandrovskiy, and L.K. Tselishcheva. 1995. Phytolithic Analysis of Holocene Paleosoils. Eurasian Soil Science 27: 46–56.

Hart, T. 2011. Evaluating the Usefulness of Phytoliths and Starch Grains Found on Survey Artifacts. Journal of Archaeological Science 38:3244–3253. DOI:10.1016/j.jas.2011.06.034.

Horrocks, M. 2005. A Combined Procedure for Recovering Phytoliths and Starch Residues from Soils, Sedimentary Deposits and Similar Materials. Journal of Archaeological Science 32:1169–1175. DOI:10.1016/j.jas.2005.02.014.

Latorre, F., M.F. Honaine,and M.L. Osterrieh. 2012. First Report of Phytoliths in the Air of Argentina. Aerobiologia 28:61–69. DOI:10.1007/s10453-011-9211-5.

Laurence, A.R., A.V. Thoms, V.M. Bryant, and C. McDonough. 2011. Airborne Starch Granules as a Potential Contamination Source at Archaeological Sites. Journal of Ethnobiology 31:213–232. DOI:10.2993/0278-0771-31.2.213.

Loy, T.H. and H. Barton. 2006. Post-Excavation Contamination and Measures for Prevention. In Ancient Starch Research, edited by R. Torrence and H. Barton, pp. 165–167. Left Coast Press, Walnut Creek, CA.

Madella, M. and C. Lancelotti. 2012. Taphonomy and Phytoliths: A User Manual. Quaternary International 275:76–83. DOI:10.1016/j.quaint.2011.09.008.

Madella, M., A. Alexandre, and T. Ball. 2005. International Code for Phytolith Nomenclature 1.0. Annuals of Botany 96:253–260. DOI:10.1093/aob/mci172.

Madella, M., A.H. Powers-Jones, and M.K. Jones. 1998. A Simple Method of Extraction of Opal Phytoliths from Sediments Using a Non-Toxic Heavy Liquid. Journal of Archaeological Science 25:801-803. DOI:10.1006/jasc.1997.0226.

McCorriston, J., D.E. Walter, E.A. Oches, and K.L. Cole. 2002. Holocene Paleoecology and Prehistory in Highland Southern Arabia. Paléorient 28:61–88.

Okamoto, G., T. Okura, and K. Goto. 1957. Properties of Silica in Water. Geochimica et Cosmochimica Acta 12:123–132. DOI:10.1016/0016-7037(57)90023-6.

Parmenter, C. and D.W. Folger. 1974. Eolian Biogenic Detritus in Deep Sea Sediments: A Possible Index of Equatorial Ice Age Aridity. Science 185:695–698. DOI:10.1126/science.185.4152.695.

Parr, J.F. 2002. A Comparison of Heavy Liquid Flotation and Microwave Digestion Techniques for the Extraction of Fossil Phytoliths from Sediments. Review of Palaeobotany and Palynology 120:315–336. DOI:10.1016/S0034-6667(01)00138-5.

Parr, J.F., V. Dolic, G. Lancaster, and W.E. Boyd. 2001. A Microwave Digestion Method for the Extraction of Phytoliths from Herbarium Specimens. Review of Palaeobotany and Palynology 116:203–212. DOI:10.1016/S0034-6667(01)00089-6.

PhytCore DB: Powered by ArcheoScience. PhytCore [web page]. URL: http://www.phytcore.org/phytolith/index.php. Accessed on March 23, 2017.

Piperno, D.R. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Lanham, MD.

Rovner, I. 1983. Plant Opal Phytolith Analysis: Major Advances in Archaeobotanical Research. Advances in Archaeological Method and Theory 6:225–266. DOI:10.1016/B978-0-12-003106-1.50011-0.

Rosen, A.M. 1992. Preliminary Identification of Silica Skeletons from Near Eastern Archaeological Sites: An Anatomical Approach. In Phytolith Systematics: Emerging Issues, edited by G. Rapp, Jr. and S.C. Mulholland, pp. 129–147. Plenum Press, New York, NY.

Rosen, A.M, and S. Weiner. 1994. Identifying Ancient Irrigation: A New Method Using Opaline Phytoliths from Emmer Wheat. Journal of Archaeological Science 21:125–132. DOI:10.1006/jasc.1994.1013.

Tsartsidou, G., S. Lev-Yadun, R. Albert, A. Miller-Rosen, N. Efstratiou, and S. Weiner. 2007. The Phytolith Archaeological Record: Strengths and Weaknesses Evaluated Based on a Quantitative Modern Reference Collection from Greece. Journal of Archaeological Science 34:1262–1275. DOI:10.1016/j.jas.2006.10.017.

Twiss, P. 2001. A Curmudgeon’s View of Grass Phytolithology. In Phytoliths: Applications in Earth Sciences and Human History, edited by J. D. Meunier and F. Colin, pp. 7–25. A.A. Balkema Publishers, Lisse, Netherlands.

Published
2018-04-25
How to Cite
Buffington, A. F., Weiland, A., Arnold, J., & Arbogast, D. (2018). What is Your “Phytolith Load”? An Examination of the Potential for Cross-Contamination During Phytolith Extraction. Ethnobiology Letters, 9(2), 65-74. https://doi.org/10.14237/ebl.9.2.2018.955
Section
Research Communications